Evaluation and Management of Suspected, Medical and Surgical Necrotizing Enterocolitis Clinical Pathway
Johns Hopkins All Children’s Hospital

Evaluation and Management of Suspected, Medical and Surgical Necrotizing Enterocolitis Clinical Pathway

Table of Contents

1. Rationale
2. Background / Published Data and Levels of Evidence
3. Clinical Management
4. Summary
5. Pathway / Algorithm
6. Glossary
7. References
8. Outcome Measures
9. Appendix
10. Clinical Pathways Team Information

Updated: 12/08/2022

Owner & Primary Author: Sandra Brooks, MD, MPH

This pathway is intended as a guide for physicians, physician assistants, nurse practitioners and other healthcare providers. It should be adapted to the care of specific patient based on the patient’s individualized circumstances and the practitioner’s professional judgment.
Evaluation and Management of Suspected, Medical and Surgical Necrotizing Enterocolitis
Clinical Pathway

Rationale
To optimize the diagnostic evaluation of infants with suspected necrotizing enterocolitis (NEC), with goals of earlier confirmation of a NEC diagnosis, avoidance of unnecessary treatment in the absence of NEC, administration of patient and condition-specific antibiotics and provision of additional information to guide decisions regarding the need for surgical intervention.

To establish and operationalize an abdominal ultrasound protocol specific for necrotizing enterocolitis assessment that can be obtained as part of the diagnostic evaluation of neonates with suspected necrotizing enterocolitis. This imaging exam will be referred to in this document as “abdominal doppler ultrasound” (ADUS).

Background / Published Data and Levels of Evidence

Necrotizing enterocolitis (NEC) is an inflammatory disease of the gastrointestinal tract characterized by ischemic necrosis of the intestinal mucosa, mostly affecting premature neonates. Its pathogenesis is incompletely understood and is thought to be multifactorial in nature. Predisposing factors include intestinal immaturity, microbial dysbiosis and impaired intestinal oxygen delivery (1-4).

Clinical Presentation:
The clinical diagnosis of NEC is often a challenge, as the presentation may vary considerably among affected infants, is frequently nonspecific, and may be indistinguishable from neonatal sepsis. The initial presentation can range from 1) non-specific signs and symptoms of lethargy, temperature instability, feeding intolerance or apnea; 2) classical form with abdominal distension, bloody stool and / or bilious aspirates/emesis; 3) Fulminant onset with shock and circulatory collapse.

Abdominal tenderness and discoloration are highly suggestive of NEC. Pneumatosis intestinalis and/or portal venous gas are pathognomonic radiographic findings. Even though timely and accurate diagnosis is key as the mortality rate is higher after intestinal perforation, the challenge remains as the most common presentation of non-specific clinical findings (including gastric residuals and gaseous abdominal distention) is not diagnostic of the disease and most of the affected infants will not have a subsequent diagnosis of NEC (5).
Modified Bell’s Classification:
The Bell’s classification system was developed to stratify patients with NEC by disease severity to aid standardization of management in each category. The original classification was subsequently modified with sub classifications proposed within stages II and III by Walsh and Kleigman in 1986 (Table 1). A prospective cross-sectional survey of 158 level 2 and 3 UK NICUs found that 45% of infants with NEC initially presented as modified Bell’s I, 21% modified Bell’s II, and 33% modified Bell’s III (6,7).

Table 1. (Adapted from Kleigman)

<table>
<thead>
<tr>
<th>STAGE</th>
<th>SYSTEMIC SIGNS</th>
<th>INTESTINAL SIGNS</th>
<th>RADILOGIC SIGNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA—Suspected NEC</td>
<td>Temperature instability, apnea, bradycardia, lethargy</td>
<td>Elevated pre-gavage residuals, mild abdominal distention, emesis, guaiac-positive stool</td>
<td>Normal or intestinal dilatation, mild ileus</td>
</tr>
<tr>
<td>IB—Suspected NEC</td>
<td>Same as above</td>
<td>Bright red blood from rectum</td>
<td>Same as above</td>
</tr>
<tr>
<td>IIA—Definite NEC</td>
<td>Same as above</td>
<td>Same as above, plus absent bowel sounds, +/- abdominal tenderness</td>
<td>Intestinal dilation, ileus, pneumatosis intestinalis</td>
</tr>
<tr>
<td>IIB—Definite NEC</td>
<td>Same as above, plus mild metabolic acidosis, mild thrombocytopenia</td>
<td>Same as above, plus absent bowel sounds, definite abdominal tenderness, +/- abdominal cellulitis or right lower quadrant mass</td>
<td>Same as IIA, plus portal vein gas, +/- ascites</td>
</tr>
<tr>
<td>IIIA—Advanced NEC</td>
<td>Same as IIB, plus hypotension, bradycardia, severe apnea, combined respiratory and metabolic acidosis, disseminated intravascular coagulation, neutropenia</td>
<td>Same as above, plus signs of generalized peritonitis, marked tenderness, and distention of abdomen</td>
<td>Same as IIB, plus definite ascites</td>
</tr>
<tr>
<td>IIIB—Advanced NEC</td>
<td>Same as IIIA</td>
<td>Same as IIIA</td>
<td>Same as IIB, plus pneumoperitoneum</td>
</tr>
</tbody>
</table>

Serologic markers of NEC:
As in many neonatal infections, infants with NEC may present with non-specific indicators of infection such as thrombocytopenia or elevated lactate levels.

C Reactive protein (CRP) is an early phase reactant that becomes abnormal in stage II and stage III NEC and as such is a sensitive but non-specific marker for NEC. Persistently elevated CRP after initiation of appropriate medical management suggests associated complications which may require surgical intervention, while normal serial CRP values would not be consistent with NEC and therefore discontinuation of antibiotic therapy and early resumption of feedings would be indicated.
To date, there are no “ideal” biomarkers for screening or early diagnosis of NEC. Non-specific biomarkers like IL-6 and neutrophil CD64 are good “early warming” indicators, but cannot differentiate between systemic infection and NEC.

Platelet-activating factor and intestinal fatty acid binding protein were both sensitive and specific and could be potentially useful, although their use must be further tested in larger prospective studies.

Gut-associated proteins like plasma or urinary L-FABP, I-FABP and TEF3 are specific for acute intestinal injury and NEC. These biomarkers and the LIT score can predict severe cases of NEC with subsequently require surgery. They are, however, unable to diagnose mild or early cases of intestinal injury.

Enhanced inflammatory biomarkers like fecal calprotectin and S100A12 are relatively specific mediators for intestinal injury. However, the intra- and inter-individual variability in concentration and the source of the specimen render the tests inconsistent, unreliable, and difficult to use in the acute clinical situation.

A systemic review concluded that most serologic markers of NEC have been used in too few studies to evaluate their use (8-10).

Antimicrobial coverage:

Antimicrobial therapy is universally prescribed to manage NEC and is primarily geared toward preventing bacteremia and potential complications of peritonitis or abscess formation caused by translocation of organisms through a compromised intestinal barrier. However, there is no clear evidence-based consensus on either antimicrobial selection or duration of therapy.

A 2012 Cochrane review and a 2021 systemic review found that most antibiotic regimens used included broad-spectrum coverage for enteric gram-negative organisms (e.g. *E.coli, Klebsiella spp.*, *Enterococcus spp.*, and anaerobic organisms consisting of a combination of ampicillin, gentamicin and clindamycin/metronidazole were effective in decreasing mortality and preventing clinical deterioration. However, there was insufficient evidence to recommend a particular antibiotic regimen for the treatment of NEC.

There are some studies that link the addition of anaerobic therapy with later intestinal stricture formation. However, a large multicenter cohort study noted that this association is most likely a consequence of survival bias.

The addition of Vancomycin is institution-specific and is dictated by the prevalence of methicillin-resistant *Staphylococcus aureus* (MRSA) in the NICU.

Because there are limited evidence-based recommendations for cessation of antimicrobials, short courses of antimicrobial coverage may be indicated when evidence of intestinal
inflammation has remitted (11-16).

Resumption of feeds after NEC:

Duration of bowel rest after resolution of acute signs of NEC remains controversial.

A 2018 review of the literature found that initiating early enteral feeding, within 5 days of NEC diagnosis, was not associated with adverse outcomes, including NEC recurrence. In addition, catheter-related sepsis and post-NEC stricture rates were unchanged between early and delayed enteral feeding groups after NEC. However, the quality of the evidence was suboptimal. (17)

Another systematic review and meta-analysis in 2020 had 3 studies that met inclusion criteria and no randomized trials. Bell’s Stage I infants were not included. The early refeeding group was defined as <5-7 or median 4 days and later refeeding group as ≥5-7 or median 10 days. There was no increase in negative outcomes with earlier refeeding after NEC. Earlier initiation of enteral feeds resulted in a significantly lower risk for the combined outcome of recurrent NEC and/or post-NEC stricture. (16)

Conversely, duration of bowel rest may be longer than duration of antibiotic therapy depending on clinical assessment of patients’ readiness to feed.

Radiologic diagnostic dilemmas:

The current and absolute indication for surgery for infants with NEC is intestinal perforation. However, more than 50% of infants who receive surgery for NEC or die have no sign of perforation as evidenced by the presence of pneumoperitoneum on plain abdominal films (KUBs). The timing of surgical intervention in these infants remains unclear.

KUBs are the gold standard for NEC diagnostic imaging. However, such testing has several known limitations that include difficulty in assessing the amount of intraabdominal fluid, difficulty in interpretation of findings in the face of a gasless abdomen, and a reported relatively high incidence of neonates with NEC and demonstrated bowel perforation who had a non-diagnostic abdominal radiograph.

Abdominal and doppler Ultrasonography (ADUS) has become a useful diagnostic adjunct in recent years. Like KUBs, US can depict intramural gas, portal venous gas, and free intraperitoneal gas. However, the major advantages of US over KUBs are that it can detect intestinal motility, intraabdominal fluid, impaired bowel wall thickness, and decreased bowel wall perfusion. Thus, non-specific and inconclusive findings on KUBs can be better delineated by US prompting earlier suspicion of necrotic or non-viable bowel and prompting earlier intervention.

A retrospective evaluation of 238 infants with confirmed NEC who had no radiological evidence of pneumoperitoneum identified a combination of several independent predictors of surgical intervention that were seen on abdominal ultrasonography and radiography. These included persistent dilation of the bowel loops and evidence of portal venous gas which were detected.
by radiography, and bowel wall thickening, absent peristalsis and echogenic-free fluid or focal fluid collection which were detected by ADUS. (1, 18-22).

The use of ADUS may be limited by variability of operator expertise, lack of 24-hour availability, and insufficient data to accurately apply findings for management decisions (e.g. surgery).

Indications for surgical intervention:

Evidence of pneumoperitoneum on abdominal imaging indicates intestinal perforation due to severe necrosis. This finding is a clear indicator that surgical intervention is warranted. However, detecting intestinal perforation is not straightforward, as perforation can occur without evidence on abdominal radiographs.

Surgery is also appropriate for infants with severe irreversible necrosis who are at high risk for perforation or other severe complications of NEC. However, in clinical practice, it is difficult to identify such infants. Based on clinical experience, it is presumed these patients have continued clinical deterioration despite maximal medical support.

Comparison of surgical interventions:

Surgical NEC is managed with a peritoneal drainage (PD) insertion or initial laparotomy (IEL). There remains no clear support of one intervention over the other.

Two large multicenter and prospective RCTs (the North America NET trial and the predominantly European NECSTEPS) attempted to address the issue. The NET trial concluded that PD did not improve survival and was limited in its utility as definitive treatment for NEC as 74% of neonates treated with PD required delayed EL. Further analysis of the data in 2010 showed no improvement in the immediate clinical status of patients treated with PD and it did not support the use of PD as a stabilizing or temporizing measure. NECSTEPS concluded that the type of operation performed did not influence survival nor the early outcomes. A 2011 Cochrane review combined the results of the two studies and concluded that no significant benefits or harms of PD over IEL could be identified.

Another RCT comparing IEL to PD among ELBW infants included 992 eligible infants, 310 were randomized and 96% had primary outcome assessed. Death or NDI occurred in 69% of infants in the laparotomy group versus 70% with drainage (adjusted relative risk [aRR] = 1.0; 95% confidence interval [CI]: 0.87–1.14). With a preoperative diagnosis of NEC, death or NDI occurred in 69% after laparotomy versus 85% with drainage (aRR=0.81; 95% CI: 0.64 to 1.04). For preoperative diagnosis of IP, death or NDI occurred in 69% after laparotomy versus 63% with drainage (aRR, 1.11; 95% CI: 0.95 to 1.31). There was no overall difference in death or NDI rates at 18–22 months corrected age between initial laparotomy versus drainage. However, the preoperative diagnosis of NEC or IP modified the impact of initial treatment (23).

A 2022 meta-analysis of five case series, five retrospective cohort studies, and three randomized controlled trials (RCT) (that included the NET trial) with a total of 1062 patients, found no significant difference in mortality between PD and EL as initial surgical intervention. Their results suggest that either intervention could be used in selected patients.
Similar findings were found in a 2020 systematic review when only observational studies and RCTs with high quality of reporting based on the STROBE checklist (Strengthening the Reporting of Observational Studies in Epidemiology) were included (24-31).

NEC complications:
Complications are related to the stage of the disease.

A- Short term complications may include:
- Infectious complications – Sepsis, meningitis, peritonitis, and abscess formation
- Disseminated intravascular coagulation
- Respiratory and cardiovascular complications – Hypotension, shock, and respiratory failure
- Metabolic complications – Hypoglycemia and metabolic acidosis

B- Long-term complications may include:
- Gastrointestinal strictures and adhesions
- Cholestasis
- Short bowel syndrome with or without intestinal failure
- Failure to thrive (32)

Long-term outcomes:
Complications of NEC include gastrointestinal problems of strictures and adhesions, cholestasis from long-term parenteral nutrition, short bowel syndrome with or without intestinal failure. It is also associated with significantly worse neurodevelopmental outcome than prematurity alone. Presence of advanced NEC and need for surgery increase the risk of neurological impairment including a higher risk of cerebral palsy (1.5 (1.2 to 2.0), p = 0.001), visual (2.3 (1.0 to 5.1), p = 0.04), cognitive (1.7 (1.4 to 2.2), p<0.0001) and psychomotor impairment (1.7 (1.3 to 2.2), p<0.0001). The odds ratio of neurodevelopmental impairment was found to be 2.3 times higher in neonates with Bell's stage III disease or requiring surgery ((1.5 to 3.6), p = 0.0001) (33).

Follow-up examinations at 18 to 22 months in infants who had undergone surgery for NEC showed a significantly reduced risk of death or neurodevelopmental impairment among those who had undergone a EL as compared with those who had undergone PD. These studies indicate that once surgery is required, the outcome may be poor, a finding that underscores the need for effective prevention (23).
Clinical Management

Physical Assessment:
- a) Vital signs, cardiac/respiratory/neuro status
- b) Hemodynamic status (capillary refill, blood pressure (BP), urine output)
- c) GI function and exam (bowel sounds, distension, color, girth)

Diagnosis per Modified Bell’s Staging (Table 2)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Classification*</th>
<th>Systemic and Laboratory signs</th>
<th>Intestinal signs</th>
<th>Radiological signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Suspected NEC**</td>
<td>- Temperature instability</td>
<td>- Gastric residuals</td>
<td>Normal or mild ileus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Apnea/bradycardia</td>
<td>- Mild abdominal distension</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lethargy</td>
<td>- Emesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Hemoccult positive stool</td>
<td></td>
</tr>
<tr>
<td>Ib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIa</td>
<td>Confirmed Medical NEC</td>
<td>Same as above</td>
<td>Same as above, plus:</td>
<td>- Intestinal dilation</td>
</tr>
<tr>
<td></td>
<td>(mildly ill)</td>
<td></td>
<td>- Absent bowel sounds</td>
<td>- ileus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± abdominal tenderness</td>
<td>- Pneumatosis intestinalis</td>
</tr>
<tr>
<td>IIB</td>
<td>(moderately ill)</td>
<td>Same as above, plus:</td>
<td>Same as above, plus:</td>
<td>- Intestinal plus:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mild metabolic acidosis</td>
<td>- Definitive abdominal</td>
<td>- portal venous gas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mild thrombocytopenia</td>
<td>tenderness ± abdominal</td>
<td>± ascites</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cellulitis or right</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lower quadrant mass</td>
<td></td>
</tr>
<tr>
<td>IIIa</td>
<td>(severely ill)</td>
<td>Same as above plus:</td>
<td>Same as above, plus:</td>
<td>Same as above plus:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hypotension</td>
<td>- Signs of generalized</td>
<td>- Peritonitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bradycardia</td>
<td>- Marked tenderness</td>
<td>- Marked ascites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Severe apnea</td>
<td>- Abdominal distention</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Combined respiratory and metabolic acidosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Disseminated intravascular coagulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Neutropenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIb</td>
<td>Confirmed Surgical NEC</td>
<td>Same as above</td>
<td>Same as above</td>
<td>Same as above, plus:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Pneumoperitoneum</td>
</tr>
</tbody>
</table>

* Patients may progress through the different stages of NEC. Status should be re-evaluated and treated according to the treating physicians’ judgement.

These patients invariably end up not having a diagnosis for NEC. Their symptomatology could have been non-specific related to prematurity or secondary to non-intestinal etiology.
Management per Diagnosis (Table 3)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Stage</th>
<th>Interventions</th>
<th>Laboratory Testing</th>
<th>Suggested Radiographic Imaging Frequency</th>
<th>Antibiotic Choice and Duration</th>
<th>Bowel Rest Duration</th>
<th>Pediatric Surgery Consult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected NEC</td>
<td>Ia</td>
<td>Serial examinations</td>
<td>CBC CRP</td>
<td>KUB Q12H for 24-48 hours</td>
<td>Ampicillin Tobramycin for 48 hours</td>
<td>Variable, up to 48 hours</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Ib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed Medical NEC</td>
<td>IIa</td>
<td>Same as above, plus: Replogle to LIS7</td>
<td>Same as above</td>
<td>Q12H for 48 hours, then prn</td>
<td>Piperacillin-Tazobactam for 7 days</td>
<td>5-7 days</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IIb</td>
<td>Same as above, plus: Acid-base correction</td>
<td>Same as above plus: Blood gas CMP</td>
<td>Q8H for 48 hours, then prn</td>
<td>Piperacillin-Tazobactam for 10 days</td>
<td>7-10 days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIa</td>
<td>Same as above, plus: Lactate</td>
<td></td>
<td>Q6H for 48 hours, then Qday until stable, then prn</td>
<td>Piperacillin-Tazobactam for 14 days</td>
<td>7-14 days</td>
<td></td>
</tr>
<tr>
<td>Confirmed Surgical NEC</td>
<td>IIIb</td>
<td>Interventions per surgical team</td>
<td>Same as above</td>
<td>Pre-op and post-op, then prn</td>
<td>To be determined by surgical team</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Testing frequency will be based on clinical status / derangements present with correction done as indicated.

2. To ensure all images are assessed immediately, order as “stat” and select “wet read” option to ensure that images are sent to VRad (virtual radiology) when applicable.

3. Frequency and types of radiographs may vary based on patient disease progression. **Radiographs include plain KUBs, left lateral decubitus or a combination.** Cross-table lateral and orthogonal views may be used if recommended by the radiological team. **KUBs:** assess the pattern of bowel gas (moving, fixed, absent), presence/persistence/resolution of pneumatosis, and portal venous gas. It also allows to assess placement/depth of OGT for gastric decompression. **Left lateral decubitus views:** optimal for detecting free air. Cross-table lateral view: can aid in seeing tiny foci of free air. Orthogonal views: may help in visualizing pneumatosis.

4. May consider obtaining an ADUS in a patient with symptoms concerning for NEC and a gasless or equivocal KUB, or in patients with an abnormal KUB to confirm findings and rule-out evidence of necrotic or perforated bowel.

5. **Add Vancomycin for 48 hours (or replace ampicillin in stage Ia/ Ib) in patients with central venous lines, MRSA colonization, or history of previous MRSA infections.** Monitor and manage drug levels with pharmacy. In patients with concomitant use of Zosyn and Vancomycin, monitor serum creatinine Q24H for 48 hours.

6. **Consider ID consult for bacteremia, persistent/worsening symptoms after 48 hours, anticipated extended use of vancomycin beyond 48 hours and/or use of alternative antibiotics such a meropenem.**

7. Duration of Replogle to be determined by surgical team.
Additional Considerations:

Infectious considerations:
- Oxacillin is not recommended in stage I given concerns for Enterococci prevalence in the pathogenesis of NEC and the high likelihood of UTI in patients with ileus
- Fluconazole is not indicated for routine use and should not be added without ID recommendations
- Consider obtaining an ID consult for complicated cases
- Duration of antibiotics for complicated cases to be done in consultation with the ID team
- Please refer to NICU “Late Onset Sepsis” clinical pathway for further details on sepsis evaluation approach

Hematologic considerations:
Hematologic abnormalities to be corrected as needed with optimal platelets counts goal of > 100,000 during the acute phase of the illness and coagulation studies within therapeutic range for age

Glossary

ADUS- abdominal doppler ultrasound
AP- anterior-posterior KUB
BMP - Basic metabolic panel
CBC - Complete blood count with differential
CD64- Cluster of differentiated 64
CRP - C reactive protein
CSF - Cerebrospinal fluid
CVL – central venous line
EP- exploratory laparotomy
IEL – Initial exploratory laparotomy
IL-6 – Interleukin 6
I-FABP – Intestinal fatty acid binding protein
KUB- Kidney, ureter and bladder XRay
L-FABP – Liver fatty acid binding protein
LIS- low intermittent suction
MRSA – methicillin resistant staphylococcus aureus
NEC- Necrotizing enterocolitis
RCT- randomized controlled trial
S100A12 – S100 calcium binding protein
TEF3 – Transcriptional enhanced factor 3
UK- United Kingdom
PD - Primary drain placement
References

3- Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet 2006;368:1271-83

33- Rees CM, Pierro A, Eaton S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fetal Neonatal Ed. 2007 May;92(3):F193-8
Outcome Measures

- Compliance with guidelines on antibiotics choice and duration of treatment

- Clinical complications of NEC recurrence / intra-abdominal abscess formation / short bowel syndrome

Appendix

Pneumatosis Intestinalis

Portal venous gas

Pneumoperitoneum
Clinical Pathway Team

Evaluation and management of suspected, medical and surgical Necrotizing enterocolitis

Clinical Pathway

Johns Hopkins All Children’s Hospital

Primary author: Sandra Brooks, MD, MPH, Chair NICU Clinical Pathway Council

Guideline Review Panel: (alphabetical order)
- Fernando Bula, MD, Division of Pediatric Infectious Diseases
- Nicole Chandler, MD, Chief, Division of Pediatric Surgery
- Megan Charlton, PharmD, NICU clinical Pharmacist
- Jane Cook, MD, Division chief, Pediatric Diagnostic Radiology
- Katie Namtu – PharmD, Co-director, Antimicrobial Stewardship Program
- Noura Nickel, MD - Neonatology
- Kyle Thompson, MD, Fellow, Pediatric Surgery

Clinical Pathway Management Team: Joseph Perno, MD; Courtney Titus, PA-C

Date Approved by JHACH Clinical Practice Council: N/A

Date Available on Webpage: December 16, 2022

Disclaimer

Clinical Pathways are intended to assist physicians, physician assistants, nurse practitioners and other health care providers in clinical decision-making by describing a range of generally acceptable approaches for the diagnosis, management, or prevention of specific diseases or conditions. The ultimate judgment regarding care of a particular patient must be made by the physician in light of the individual circumstances presented by the patient.

The information and guidelines are provided "AS IS" without warranty, express or implied, and Johns Hopkins All Children’s Hospital, Inc. hereby excludes all implied warranties of merchantability and fitness for a particular use or purpose with respect to the information. Johns Hopkins All Children’s Hospital, Inc. shall not be liable for direct, indirect, special, incidental or consequential damages related to the user's decision to use the information contained herein.